
International Journal of Scientific & Engineering Research, Volume 2, Issue 1, January-2011 1
ISSN 2229-5518

A Comparative Study on Improving the
Latency Time of File Access Using Standard

Backpropagation Neural Networks
Mr. S. Ashok Kumar, Dr. G. M. Nasira

Abstract—The data or file will be required to be moved from secondary memory to main memory for executing certain
instructions. The time taken to transfer the data is referred as latency time. The In this paper a detailed study on various file
access predictors and caching techniques is discussed. The various file operations such as file prediction, file creation, file
deletion, file modification and file access are considered and a study is made in this paper for early prediction of files. Various
file access predictors have been proposed in identifying the immediate successor of file or data block to be accessed. Few
predictions have also proposed in identifying the files that can be accessed upto five access ahead. The standard
backpropagation neural implementation in file access by improving the latency time of the file access is also proposed in this
paper.

Index Terms— Artificial Neural Networks, Backpropogation Algorithm, Caching, File Access, Prefetching Files, Predictors

—————————— ——————————

1 INTRODUCTION

This paper attempts to undertake the study of comparing
the existing file access predictors with the proposed neur-
al network implementation in accessing the file or data
from secondary memory to main memory. While execut-
ing an instruction, the computer processor search for data
or file that is stored in the main memory i.e. RAM (Ran-
dom Access Memory) of the computer. If the required
data or file is not stored in the main memory, then the
data or file has to be fetched from the secondary memory
i.e. hard disk or floppy disk or compact disks (CD). This
process is called as loading a program.

The problem is that the hard disk is a mechanical sys-
tem, and not an electronic one. This means that the data
transfer between the hard disk and the main memory is
much slower than the data transfer between the processor
and the main memory. [1]

The processor communicates with the main memory
typically at a transfer rate of 800 MB/s (100 MHz bus),
while the hard disks transfer data at rates such as 33
MB/s, 66 MB/s and 100 MB/s, depending on their technol-
ogy. The latency time is thus very high for data transfer
between the main memory and secondary memory. The
latency time is the time between initiating a request and
receiving the answer. [2]

2 FILE/DATA ACCESS

The idea of placing the likely data to be accessed together
near each other has long been accepted as a wise goal in
memory storage systems. Placing item nearer will reduce
the latency time. To overcome latency problems two
main techniques are used they are pre-fetching and pre-
dictive caching.

Caching keeps the mostly required data in the memory,

likewise pre-fetching try to bring the data in memory be-
fore they are required [1].

2.1 Caching
The memory access time can be reduced if the most fre-
quent accessed instruction and data are kept in a small
memory. Such fast small memory is called as cache
memory. The caching methodology operates as of the da-
ta which was accessed recently is likely to be accessed
very soon again. Thus the cache memory contains the
next data that might be requested.

The drawback of caching is to find out which data
block has to be removed when cache memory is full. And
when a new block of data is to be transferred to cache.
When memory is full FIFO (First in First Out) and LRU
(Least Recently Used) block replacement policies are
used.
2.2 Prefetching
File prefetching is an effective technique for improving
file access performance. Prefetching will fetch the re-
quired data by retrieving the data in advance. A predic-
tive prefetching requires the prediction of sequences of
file accesses far enough in advance to avoid the predic-
tions being untimely.

The literature survey shows that a number of file
access predictors are being proposed namely [1], [2]

1) First Successor (FS)
2) Last Successor (LS)
3) Stable Successor (SS)
4) Recent Popularity (RP)
5) First Stable Successor (FSS)
6) Predecessor Position (PP)
7) Prepredecessor Position (PPP)

First Stable Successor (FSS) predictor requires m suc-
cessive instances of file Y immediately following in-

2

stances of file X before predicting that file Y is the suc-
cessor of file X. Otherwise it makes no prediction.
When m = 1, the FSS predictor becomes identical to
the First Successor protocol and predicts that that file Y
is the successor of file X once it has encountered a single
access to file Y immediately following an access to file X.

Assumptions
G is file being currently accessed
F its direct predecessor
FirstStableSuccessor (F) is last prediction made for
The successor of F
Last Successor (F) is last observed successor of F
Count (F) is a counter
M is minimum number of consecutive iden-
tical successors to declare a First Stable Suc-
cessor

Algorithm
if FirstStableSuccessor(F) is undefined then if

LastSuccessor(F) = G then
Counter(F) Counter(F) + 1

else
Counter(F) 1

end if
if Counter(F) = m then

FirstStableSuccessor(F) G
end if

end if
Fig. 1. First Stable Successor Algorithm, The figure shows the first
stable successor algorithm used for predicting the file for early file
access.

3 ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) is an abstract simula-
tion of a real nervous system that contains a collection of
neuron units communicating with each other via axon
connections. Neural networks take a different approach in
solving a problem than that of conventional methods.

Conventional methods use algorithmic approach,
where the method follows a set of instructions in order to
solve the problem. Unless we know the specific steps in
prior that the method needs to follow, only then the com-
puter can solve the problem. That restricts the problem
solving capability of conventional methods to solving
problems. But a method would be so much more useful if
they could do things that we don't exactly tell them rather
train them how to do [3].

Neural networks process information in a similar way
the human brain does. The network is composed of a
large number of highly interconnected processing ele-
ments called neurons which works in parallel to solve a
specific problem. There are two phases in neural informa-
tion processing.

They are the learning phase and the retrieving phase.
In the training phase, a training data set is used to deter-
mine the weight parameters that define the neural model.
This trained neural model will be used later in the retriev-
ing phase to process real test patterns and yield classifica-

tion results. A detailed literature survey was made in the
area of neural network which has motivated us to apply
this technique to solve this problem [4].

A standard feed forward artificial neural network is
shown in the Fig. 1. It has three layers. The inputs biases
and weights are labeled. Each unit outputs a function of
its inputs. This function is called the activation function.
Selecting values for the biases and weights is done to fit
the entire ANN function to data.

Fig. 2. Example Artificial Neural Network, showing 3 layers viz input
units, hidden units and output units with artificial neurons. The figure
shows the bias b and weights w applied to the network

The output of the artificial network is given by the fol-
lowing equation

Output = (b3 + w5 f (b1 + w1 i1 + w3 i2) +
 w6 f (b2 + w2 i1 + w4 i2))

Artificial Neural Network (ANN) is a small group of clas-
sic networks which are widely used and on which many
others are based. These are: Back Propagation, Hopfield
Networks and Competitive Networks. The Standard
back-propagation (Fletcher and Powell, 1963) is the most
popular method used to select values for ANN free para-
meters. It is done iteratively, calculating the error gradients
of the data in respect to the free parameters and then up-
dates them appropriately. The error gradients are calcu-
lated starting from the error on the outputs and works
backwards. Each iteration of all the training data is called
an epoch. It is a steepest decent search for a minimum val-
ue.

A Back Propagation network learns by example. You
give the algorithm examples of what you want the net-
work to do and it changes the network’s weights so that,
when training is finished, it will give you the required
output for a particular input. The backporpogation algo-
rithm works as follows:

1. First apply the inputs to the network and work
out the output – the initial weights were random
numbers.

2. Next work out the error for neuron B. The error is

 ErrorB = OutputB (1-OutputB)(TargetB – OutputB)

International Journal of Scientific & Engineering Research, Volume 1, Issue 2, November-2010 3
ISSN 2229-5518

3. Change the weight. Let W+AB be the new (trained)
weight and WAB be the initial weight.

 W+AB = WAB + (ErrorB x OutputA)

4. Calculate the Errors for the hidden layer neurons.
Unlike the output layer we can’t calculate these
directly (because we don’t have a Target), so we
back propagate them from the output layer. This
is done by taking the Errors from the output neu-
rons and running them back through the weights
to get the hidden layer errors.

 ErrorA = OutputA (1 - OutputA)(ErrorB WAB +
 ErrorC WAC)

5. Having obtained the Error for the hidden layer
neurons now proceed as in stage 3 to change the
hidden layer weights. By repeating this method
we can train a network of any number of layers.

6.1 Artificial Neuron

An artificial neuron is a device with many inputs and one
output. The neuron has two modes of operation; the train-
ing mode and the using mode. In the training mode, the
neuron can be trained to fire or not for particular input
patterns. In the using mode, when a taught input pattern
is detected at the input, its associated output becomes the
current output. If the input pattern does not belong in the
taught list of input patterns, the firing rule is used to de-
termine whether to fire or not.

Fig. 3. Simple neuron, the figure shows a simple neuron with activa-
tion function and input weights. The output is decided based on the
activation function used by the network

4 RELATED WORK

Kroeger and Long [5] suggested that the file access pre-
diction is not only used to prefetch the necessary files,
but it is also used to find the related files which can be
grouped under a single set.

Griffioen and Appleton [6] presented an analysis of the
potential effects of predictive prefetching based on system
performance. They proposed that there was relationship
between successive pairs of file accesses.

Lei et. al. [7] proposed a new method which keeps
track of different file access patterns observed under each

application in a specific system. The method scheme
stores file patterns as access tree.

Tait and Duchamp [8] investigated a client-side
cache management technique used for detecting file
access patterns and for exploiting them to prefetch files
from servers. Darrell D.E.Long and et. al. has proposed to
distinguish between the short term and long term file
activity on a Unix system. This information helps to pre-
dict the files which are never used.

Purvi Shah, Jehan Paris, A. Amer and Darell D.E Long
[9] have suggested in identifying a stable file access pat-
tern using the first stable successor predictor. It is re-
quired since prefetching is built on long-lived clusters of
related files. Natarjan Ravichandran and Jehan Paris [10]
have proposed a perceptron based file predictor that pre-
dicts the files that need to be accessed upto give file ac-
cesses ahead.

5 PROPOSED RESEARCH
The file activity can be summarized and is presented in

the Table 1
TABLE 1

VARIOUS FILE ACTIVITIES

File Activity Particulars of the Activity

Accesses,
Creations

It is the measure of total number of files
and bytes.

Deletions It is similar to access, with deletions the
i-nodes are reused and tracked separate-
ly

Modifications It is similar to access with categories for
files that are modified and increased in
size, decreased in size, or remained the
same.

Modification

Differences
(Deltas)

It is similar to access with categories for
files that are modified and increased in
size or decreased in size. Tracks files by
the amount of change. Produces a two
dimensional histogram of file size ver-
sus the amount of the
modification.

Darell D.E. Long [11] in his findings suggests that the
files in a computer system are relatively small and most
of the file is found to be less than 8 kb size. They also
suggest that only 25% of the files are larger than 8 kb.

The various file activity include, files modified, files
deleted, files created and files accessed. A file modifica-
tion is explained with an instance as follows. When a
programmer changes a file with a text editor and saves
the changes the following steps occur

a) User will command to open the required file
b) Operating System will find the i-node
c) Operating System gets the file’s disk block

numbers from the i-node
d) Operating System reads the disk blocks and

loads the file into main memory
e) User makes the changes and saves the file
f) Operating System writes the modified file to a

new set of disk blocks with a new i-node value
g) Operating System frees the old disk blocks

and the old i-node is deleted

4

h) Operating System updates the file name to point
to the new i-node.

The modification of files relates to increase in the size
of file or decrease in size of the file. By statistics it is
found that mostly the file has growth rather than depre-
ciation. The file growth rate has direct implications for
operating system design. When a file needs to increase
in size, some operating systems allocate additional space
based on the files original size, the larger the file the
more space is allocated.

In order to recover the unused disk space, the operat-
ing system must keep track of the files that has received
the additional spaces and must be taken back when re-
quired. Modification of file size involves the following
characteristics

a) The numeric index files are modified
b) At most, half of all numeric index modifications

result in a file size increase
c) Most numeric index file size increases from

modifications are less than 32 KB.
The theory of locality states that the deletion rate for

used files should initially be low and increase as the files
get older. This will surely increase the deletion rate for
used files.

Various file characteristics are considered for the
analysis of file prefetching and predictive caching. All
the file characteristics can be defined and can be trained
by the standard backpropagation neural network algo-
rithm so that the algorithm will provide a mean in pre-
fetching the required file well in advance. This activity
will reduce the efforts of operating systems to deal with
input-output operations of a file transfer in more effi-
cient manner.

6 CONCLUSION

A detailed study on various files access predictors and
caching techniques were discussed. A detailed
comparative study on various file operations such as file
prediction, file creation, file deletion, file modification
and file access was also carried out. A standard
backpropagation neural network implementation for file
access will improve the latency time of file access has
been proposed.

REFERENCES

[1] A. Amer, “Predictive data grouping using successor prediction,” Ph.D
Dissertation, Department of Computer Science, University of Califor-
nia, Santa Cruz, CA, 2002

[2] Prasantha Kumar Patra, et. al, ”File Access Prediction Using
Neural Networks,” IEEE Transactions on Neural Networks, Vol
21, No. 6, June 2010

[3] Kartalopoulous, Stamatious V, “Understanding neural net-
works and fuzzy logic”, Prentice hall 2003

[4] Foo Yoon-Pin, Simon Tajkefuji, “Integer Linear Programming
neural networks for job-shop scheduling”, IEEE International
conference on Neural Networks, 1988, Vol. 2, pp. 341-348

[5] T. M. Kroegaer and D.D.E Long, “Design and implementation

of a predictive file prefetching algorithm,” Proceeding of
USENIX, Tech. Conference, Boston, Jun 2001

[6] Griffioen and R. Appleton, “Redoing file system latency using
a predictive approach,” Proceedings of USENIX, Tech. Confe-
rence, Boston, June 1994

[7] H. Lei and et. al, “An analytical approach to file prefetching”,
Proceedings of USENIX, Tech, January 1997

[8] Tait and Duchamp, “Detections and exploitations of file work-
ing sets”, Proceedings of Conference on Distributed Computing
systems, May 1991

[9] Purvi Shah et.al , “Identifying Stable File Access Patterns,” 21st

Proceedings of IEEE Mass storage syst. Apr 2004
[10] Natrajan Ravishandran and Jehan Paris, “ Making early predic-

tions of File Accesses,” 4th Proceedings of 4th International con-
ference on Information, Telecommunication and Technology,
December 2005

[11] Darell D.E. Long, Ethan L. Miller, Tim Gibson, “Long-term File
Activity and Inter-Reference Patterns,” CMG, 1998

[12] Keith Smith and Margo Seltzer, “File layout and file system
performance”, Technical report, Harvard University, 1994

		ijser.editor@ijser.org
	2005-10-26T12:47:33+0300
	France
	Editor IJSER
	I attest to the accuracy and integrity of this document

